Show all your work/calculations. You may write the calculations by hand but it must be VERY CLEARLY READABLE!!! Or you can do it on a spreadsheet. (Recommended) Discussion questions must be typewritten.

Consider the following program.

We have a sequential program with $T_1 = 1000$. The sequential portion is 250 and the portion that can be parallelized is 750.

1. Based on Amdahl’s Law calculate T_P and Speedup and Efficiency for $P = 2, 10, 50, 100$.

2. How many processors should be used to achieve the minimum time possible. What is that time? Calculate Speedup & Efficiency for that number of processors.

3. Discuss and explain the overall trend in performance as P increases (for this program) using Amdahl’s law calculations and perspective.

4. Based on Gustafson-Baris Law calculate T_1, T_P, Speedup & Efficiency for the following conditions. [Amount of increase in sequential portion = (Parallel/Original Parallel) *2]
 a. $P = 10$ (Note: T_1 changes for each part)
 i. Parallel section is 750 – Sequential is 250
 ii. Parallel section is 3000 – Seq. 258
 iii. Parallel section is 75,000 – Seq. 450
 iv. Parallel section is 30,000,000 – Seq 80,250
 b. $P = 1000$
 i. Parallel section is 750 - S = 250 (original problem)
 ii. Parallel section is 3000 – S = 258
 iii. Parallel section is 75,000 – S = 450
 iv. Parallel section is 30,000,000 – S = 80,250

5. Discuss and explain the overall trend in performance as the program size increases & number of processors increases (for this program) using the Gustafson-Baris law calculations and perspective.

6. Explain the different viewpoints provided by these 2 laws.